
Local and Global Optimizations

Y.N. Srikant

(Formerly) Professor
Department of Computer Science and Automation

Indian Institute of Science
Bangalore 560 012

ACM Winter School on Design, Implementation
and Verification of Computer Systems

January 3-16, 2022.

Y.N. Srikant Local and Global Optimizations

Outline of the Lecture

What is code optimization and why is it needed?
Types of optimizations
Basic blocks and control flow graphs
Local optimizations
Directed acyclic graphs and value numbering
Examples of global optimizations

Y.N. Srikant Local and Global Optimizations

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies.

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code.
Improvement may be time, space, or power consumption.

Y.N. Srikant Local and Global Optimizations

Machine-independent Code Optimization

It changes the structure of programs, sometimes of beyond
recognition.

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also).
Optimizations may be classified as local and global.

Y.N. Srikant Local and Global Optimizations

Local Optimizations

Local optimizations: within basic blocks
Local common subexpression elimination.
Dead code (instructions that compute a value that is never
used) elimination.
Reordering computations using algebraic laws.
Peephole optimizations.

Y.N. Srikant Local and Global Optimizations

Basic Blocks and Control-Flow Graphs

Basic blocks are sequences of intermediate code with a
single entry and a single exit.
We consider the quadruple version of intermediate code
here, to make the explanations easier.
Control flow graphs show flow of control among basic
blocks.
Basic blocks are represented as directed acyclic
blocks(DAGs), which are in turn represented using the
value-numbering method applied on quadruples.

Y.N. Srikant Local and Global Optimizations

Example of Basic Blocks and Control Flow Graph

Y.N. Srikant Local and Global Optimizations

Bubble Sort

Y.N. Srikant Local and Global Optimizations

Control Flow Graph of Bubble Sort

Y.N. Srikant Local and Global Optimizations

Example of a Directed Acyclic Graph (DAG)

Y.N. Srikant Local and Global Optimizations

Value Numbering in Basic Blocks

A simple way to represent DAGs is via value-numbering.
While searching DAGs represented using pointers etc., is
inefficient, value-numbering uses hash tables and hence is
very efficient.
Central idea is to assign numbers (called value numbers)
to expressions in such a way that two expressions receive
the same number if the compiler can prove that they are
equal for all possible program inputs.
We assume quadruples with binary or unary operators.
The algorithm uses three tables indexed by appropriate
hash values:
HashTable, ValnumTable, and NameTable.
Can be used to eliminate common sub-expressions, do
constant folding, and constant propagation in basic blocks.
Can take advantage of commutativity of operators, addition
of zero, and multiplication by one.

Y.N. Srikant Local and Global Optimizations

Data Structures for Value Numbering

In the field Namelist, first name is the defining occurrence and
replaces all other names with the same value number with itself
(or its constant value)

Value number

Expression Value number

(indexed by name hash value)

Constant value

(indexed by expression hash value)

ValnumTable entry

 Name

 Name list Constflag

(indexed by value number)
NameTable entry

HashTable entry

Y.N. Srikant Local and Global Optimizations

Example of Value Numbering

HLL Program Quadruples before Quadruples after
Value-Numbering Value-Numbering

a = 10 1. a = 10 1. a = 10
b = 4∗a 2. b = 4∗a 2. b = 40
c = i∗ j+b 3. t1 = i∗ j 3. t1 = i∗ j
d = 15∗a∗ c 4. c = t1+b 4. c = t1+40
e = i 5. t2 = 15∗a 5. t2 = 150
c = e∗ j+ i∗a 6. d = t2∗ c 6. d = 150∗ c

7. e = i 7. e = i
8. t3 = e∗ j 8. t3 = i∗ j
9. t4 = i∗a 9. t4 = i∗10

10. c = t3+ t4 10. c = t1+ t4
(Instructions 5 and 8
can be deleted)

1

Y.N. Srikant Local and Global Optimizations

Example: HashTable and ValNumTable

HashTable
Expression Value-Number
i∗ j 5
t1+40 6
150∗ c 8
i∗10 9
t1+ t4 11

ValNumTable
Name Value-Number
a 1
b 2
i 3
j 4
t1 5
c 6,11
t2 7
d 8
e 3
t3 5
t4 10

1

Y.N. Srikant Local and Global Optimizations

Example: NameTable

NameTable
Name Constant Value Constant Flag
a 10 T
b 40 T
i,e
j
t1, t3
t2 150 T
d
c

1

Y.N. Srikant Local and Global Optimizations

Handling Commutativity etc.

When a search for an expression i + j in HashTable fails,
try for j + i .
If there is a quad x = i + 0, replace it with x = i .
Any quad of the type, y = j ∗ 1 can be replaced with y = j .
After the above two types of replacements, value numbers
of x and y become the same as those of i and j ,
respectively.
Quads whose LHS variables are used later can be marked
as useful.
All unmarked quads can be deleted at the end.

Y.N. Srikant Local and Global Optimizations

Peephole Optimizations

Simple but effective local optimizations.
Usually carried out on machine code, but intermediate
code can also benefit from it.
Examines a sliding window of code (peephole), and
replaces it by a shorter or faster sequence, if possible.
Each improvement provides opportunities for additional
improvements.
Therefore, repeated passes over code are needed.

Y.N. Srikant Local and Global Optimizations

Peephole Optimizations

Elimination of redundant instructions.
Removing unreachable code.
Short-circuiting jumps over jumps.
Algebraic simplifications.
Strength reduction.
Use of machine idioms.

Y.N. Srikant Local and Global Optimizations

Elimination of Redundant Loads and Stores

Y.N. Srikant Local and Global Optimizations

Removing Unreachable Code

An unlabeled instruction immediately following an
unconditional jump may be removed.

May be produced due to debugging code introduced during
development.
Or due to updates to programs (changes for fixing bugs)
without considering the whole program segment.

Y.N. Srikant Local and Global Optimizations

Short-circuiting Jumps over Jumps

Y.N. Srikant Local and Global Optimizations

Reduction in Strength and Use of Machine Idioms

x2 is cheaper to implement as x ∗ x than as a call to an
exponentiation routine.
For integers, x ∗ 23 is cheaper to implement as x << 3 (x
left-shifted by 3 bits).
For integers, x/22 is cheaper to implement as x >> 2 (x
right-shifted by 2 bits).
Floating point division by a constant c can be
approximated as multiplication by its reciprocal, 1/c. 1/c
can be computed by the compiler.
Auto-increment and auto-decrement addressing modes
can be used wherever possible.

Subsume INCREMENT and DECREMENT operations
(respectively).

Detection of the Multiply-and-Add pattern is more
complicated.

Y.N. Srikant Local and Global Optimizations

Examples of Global Optimizations

Global common sub-expression elimination
Copy propagation
Constant propagation and constant folding
Loop invariant code motion
Induction variable elimination and strength reduction
Partial redundancy elimination
Dead code elimination
Loop unrolling
Function inlining
Tail recursion removal
Trace scheduling

Y.N. Srikant Local and Global Optimizations

GCSE Conceptual Example

Y.N. Srikant Local and Global Optimizations

GCSE on Running Example - 1

Y.N. Srikant Local and Global Optimizations

GCSE on Running Example - 2

Y.N. Srikant Local and Global Optimizations

Copy Propagation on Running Example

Y.N. Srikant Local and Global Optimizations

GCSE and Copy Propagation on Running Example

Y.N. Srikant Local and Global Optimizations

Constant Propagation and Folding Example

Y.N. Srikant Local and Global Optimizations

Loop Invariant Code motion Example

Y.N. Srikant Local and Global Optimizations

Strength Reduction

Y.N. Srikant Local and Global Optimizations

Induction Variable Elimination

Y.N. Srikant Local and Global Optimizations

Partial Redundancy Elimination

Y.N. Srikant Local and Global Optimizations

PRE Example 2

Y.N. Srikant Local and Global Optimizations

PRE Example 3

Y.N. Srikant Local and Global Optimizations

PRE Example 4

Y.N. Srikant Local and Global Optimizations

Dead Code Elimination - Easy Example

Code that is unreachable or that does not affect the program
can be eliminated.

int g;
void f () { int i;
i = 10; g = 100; /* dead code */
g = 250;
return;
g = 300; /* unreachable code */

}

Code after optimization:

int g;
void f () {
g = 250;
return;

}

Y.N. Srikant Local and Global Optimizations

Dead Code Elimination - More Difficult Example

int foo(int x, int y) {
int a = x + y; /* useless code */
if (x > 0) /* useless code */

a = 1; /* useless code */
return y;

}

Code after optimization:

int foo(int x, int y) {
return y;

}

Y.N. Srikant Local and Global Optimizations

Unrolling a For-loop

Y.N. Srikant Local and Global Optimizations

Unrolling While and Repeat loops

Y.N. Srikant Local and Global Optimizations

Function Inlining

Y.N. Srikant Local and Global Optimizations

Tail Recursion Removal

Y.N. Srikant Local and Global Optimizations

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path).
Identifying a trace

Identify the most frequently executed basic block.
Extend the trace starting from this block, forward and
backward, along most frequently executed edges.

Apply list scheduling on the trace (including the branch
instructions).
Execution time for the trace may reduce, but execution time
for the other paths may increase.
However, overall performance will improve.

Y.N. Srikant Local and Global Optimizations

Trace Example

��� ����� � � 	��� �

�

�

�� ���� �� ��

���� � ����
 ��

����

���� � ����

��� � ���
 �����

�

��� ������	
	� ��	

�� �	 � �

�� �� � �

�� �� � ���

�� �� � �

��� �	� �� � ���� ���	�

��� �� ��� �� �� �!� ��

��� �"� �" � ���� #��	�

��� �� � �"
 ��

��� #��	� � ��

��� �!� �$

��� ��� �� � ��

�%� #��	� � ��

��� �$� �� � ��
 ��

�	�� �	 � �	
 �

�		� �� ��	 � ��� �!� �	

��� ���	���� ��	

B2

B1

B3

B4

main trace

��� ������� 	��
 ����

Y.N. Srikant Local and Global Optimizations

Trace - Basic Block Schedule

2-way issue architecture with 2 integer units.
add, sub, store: 1 cycle, load: 2 cycles, goto: no stall.
9 cycles for the main trace and 6 cycles for the off-trace.

���� ���� ���� 	 ���� ����

� ��� �� � ���� �	��

	

 ��� �� 	�� � �
 ���� ��

� ��� �� � ���� �	��

� ��� �� � �� � ��

� ��� �	��
 � �� ��� ���� ��

� ��� �� � �� ��� �	��
 � ��

� �� ��� �� � �� � �� ���� �� � �� � �

� ��� ���� �� 	�� � ��
 ���� ��

Y.N. Srikant Local and Global Optimizations

Trace Schedule

Y.N. Srikant Local and Global Optimizations

Trace Schedule

6 cycles for the main trace and 7 cycles for the off-trace.
Speculative code motion - load instruction moved ahead of
conditional branch

Example: Register r3 should not be live in block B3
(off-trace path).
May cause unwanted exceptions. Requires additional
hardware support!

���� ���� ���� 	 ���� ����

� ��� �� � ���� �	��
 ��� �� � ���� �	��

	

 ��� � 	�� �� �
 ���� �� ��� �� � �� � ��

� ��� �	��
 � ��

 ��� ��� �� � �� � �� ���� �� � �� � �

� ��� ���� � 	�� � ��
 ���� ��

� ��� �� � �� ��� �	��
 � ��

 ���� ���� ��

Y.N. Srikant Local and Global Optimizations

Questions?

Y.N. Srikant Local and Global Optimizations

