
Introduction to
Data-Flow and Control-Flow Analyses

Y.N. Srikant

(Formerly) Professor
Department of Computer Science and Automation

Indian Institute of Science
Bangalore 560 012

ACM Winter School on Design, Implementation
and Verification of Computer Systems

January 3-16, 2022.

Y.N. Srikant DFA



Outline of the Lecture

Introduction
Examples of data-flow analyses
Fundamentals of control-flow analysis
Interprocedural data-flow analysis
Points-to analysis

Y.N. Srikant DFA



Data-flow analysis

These are techniques that derive information about the
flow of data along program execution paths.
An execution path (or path) from point p1 to point pn is a
sequence of points p1,p2, ...,pn in the program that occur
one after another.
In general, there are infinite number of paths through a
program and there is no bound on the length of a path.

Y.N. Srikant DFA



Data-flow analysis

Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts.
No analysis is necessarily a perfect representation of the
state.
DFAs collect information necessary to perform program
optimizations.

Y.N. Srikant DFA



Uses of Data-flow Analysis

Program debugging
Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions.

Program optimizations
Constant folding
Copy propagation
Common sub-expression elimination etc.

Y.N. Srikant DFA



Data-Flow Analysis Schema(1)

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point.
The set of all possible data-flow values is the domain for
the application under consideration.

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program.
A particular data-flow value is a set of definitions.

IN[B] and OUT [B]: data-flow values before and after each
basic block B.
The data-flow problem is to find a solution to a set of
constraints on IN[B] and OUT [B], for all basic blocks B.

Y.N. Srikant DFA



Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions).
Those based on flow of control.

A DFA schema consists of
A control-flow graph.
A direction of data-flow (forward or backward).
A set of data-flow values.
A confluence operator (usually set union or intersection).
Transfer functions for each block.

We always compute safe estimates of data-flow values.
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (before
and after using the estimated value).
These safe values may be either subsets or supersets of
actual values, based on the application.

Y.N. Srikant DFA



Y.N. Srikant DFA



The Reaching Definitions Problem(1)

Y.N. Srikant DFA



The Reaching Definitions Problem(2)

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a.
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path.
We compute supersets of definitions as safe values.
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow:
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant DFA



The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set.
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is

⋃
.

Direction of flow does not imply traversing the basic blocks
in a particular order.
The final result does not depend on the order of traversal of
the basic blocks.

Y.N. Srikant DFA



The Reaching Definitions Problem (4)

GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

If a variable x has two or more defintions in a basic block,
then only the last definition of x is downwards exposed; all
others are not visible outside the block

KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

If a variable x has a definition di in a basic block, then di
kills all the definitions of the variable x in the program,
except di

Y.N. Srikant DFA



Reaching Definitions Analysis: GEN and KILL

Y.N. Srikant DFA



Reaching Definitions Analysis: DF Equations

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Pass 1

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Pass 2.1

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Pass 2.2

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Pass 2.3

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Pass 2.4

Y.N. Srikant DFA



Reaching Definitions Analysis: An Example - Final

Y.N. Srikant DFA



An Iterative Algorithm for Computing Reaching Def.

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}
GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant DFA



Reaching Definitions: Bit Vector Representation

Y.N. Srikant DFA



Live Variable Analysis (1)

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p.
Sets of variables constitute the domain of data-flow values.
Backward flow problem, with confluence operator

⋃
.

IN[B] is the set of variables live at the beginning of B.
OUT [B] is the set of variables live just after B.
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B.
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable.

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant DFA



Live Variable Analysis: An Example

Y.N. Srikant DFA



Live Variable Analysis (2)

Y.N. Srikant DFA



Live Variable Analysis: An Example - Init

Y.N. Srikant DFA



Live Variable Analysis: An Example - Pass 1

Y.N. Srikant DFA



Live Variable Analysis: An Example - Pass 2.1

Y.N. Srikant DFA



Live Variable Analysis: An Example - Pass 2.2

Y.N. Srikant DFA



Live Variable Analysis: An Example - Pass 2.3

Y.N. Srikant DFA



Live Variable Analysis: An Example - Pass 2.4

Y.N. Srikant DFA



Live Variable Analysis: An Example - Final pass

Y.N. Srikant DFA



Control-Flow Analysis

CFA



Introduction

Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFG).

To determine the loop structure of CFGs.
To compute dominators - useful for code motion.
To compute dominance frontiers - useful for the
construction of the static single assignment form (SSA).
To compute control dependence - needed in parallelization.

CFA



Dominators

We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d .
Initial node is the root, and each node dominates only its
descendents in the dominator tree (including itself).
Principle of the dominator algorithm

If p1,p2, ...,pk , are all the predecessors of n, and d 6= n,
then d dom n, iff d dom pi for each i .

CFA



Dominator Algorithm Principle

CFA



Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)

CFA



Dominators, Back Edges, and Natural Loops(1)

CFA



Dominators, Back Edges, and Natural Loops(2)

CFA



Interprocedural Data-Flow Analysis

IDFA



Introduction

Intraprocedural DFA
Performed on one procedure at a time.
Assumes that a procedure invocation may alter all the
“visible” variables.
Imprecise, conservative, but simple.

Interprocedural DFA
Operates across an entire program and is more complex.
Makes information flow from caller to callee and vice-versa.
Procedure inlining is a simple method to enable such
information flow.

Applicable only if target of a call is known.
Increases memory footprint.

Applications
Converting virtual method calls to static method calls.
Checking array bounds.
Better constant propagation.

IDFA



Interprocedural DFA

Context-Insensitive IDFA
Treat each call and return as goto operations.
Create a super control flow graph .
Apply standard analysis on the super CFG.
Simple, but imprecise.

A function is analyzed as a common entity for all its calls.
Only input-output behaviour of a function is abstracted out.

Context-Sensitive IDFA
Calling context (call site) determines the effect of the call.
In the example (next slide), function test is invoked with a
constant in each of the call sites, but the value of the
constant is context-dependent.

IDFA



IDFA - Example Program

i = 9;
while (i >= 0) {

t1 = test(100); // call site 1
t2 = test(200); // call site 2
t3 = test(300); // call site 3
val[i--] = t1 + t2 + t3;

}
int test (int v) {

return (v*2);
}

Context-insensitive IDFA: function test is deemed to return 200,
400, or 600 for any of the three calls.
Context-sensitive IDFA: with interprocedural constant
propagation, t1, t2, and t3 will get precisely 200, 400, and 600
respectively.

IDFA



Super CFG and Context-Insensitive IDFA

IDFA



Cloning and Context-Sensitive IDFA

i = 9;

while (i >= 0) {

t1 = f1 (100); // call site c1
t2 = f2 (200); // call site c2

t3 = f3 (300); // call site c3
val[i--] = t1 + t2 + t3;

}

int f1 (int v) {
return test1 (v); // call site c4.1

}
int test1 (int v) { 

return (v*2); 

}

int f2 (int v) {

return test2 (v); // call site c4.2

}
int test2 (int v) { 

return (v*2); 
}

int f3 (int v) {

return test3 (v); // call site c4.3
}

int test3 (int v) { 
return (v*2); 

}

Simple, context-insensitive analysis is enough on the cloned call graph

Recursive programs cannot be handled

IDFA



Points-To Analysis

PTA



Introduction

a := &x
b := &y
if p then

y := &z
else

y := &x
fi
c := *y

b

x

c

a

y

z

q := &x
q := &y
p := q

p

xq

y

q := &x
q := &y
p := q
q := &z

p

xq

y

zThese are flow-insensitive analyses.

Points-to analysis discovers what each pointer 
variable and heap reference points to.

PTA



Flow-Insensitive vs. Flow-Sensitive Analysis

courtesy: Subhajit Roy

PTA



May vs. Must Analysis

courtesy: Subhajit Roy

PTA


